Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Elife ; 122024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206323

RESUMO

Kinesin-3 is a family of microtubule-dependent motor proteins that transport various cargos within the cell. However, the mechanism underlying kinesin-3 activations remains largely elusive. In this study, we compared the biochemical properties of two Caenorhabditis elegans kinesin-3 family proteins, KLP-6 and UNC-104. Both KLP-6 and UNC-104 are predominantly monomeric in solution. As previously shown for UNC-104, non-processive KLP-6 monomer is converted to a processive motor when artificially dimerized. We present evidence that releasing the autoinhibition is sufficient to trigger dimerization of monomeric UNC-104 at nanomolar concentrations, which results in processive movement of UNC-104 on microtubules, although it has long been thought that enrichment in the phospholipid microdomain on cargo vesicles is required for the dimerization and processive movement of UNC-104. In contrast, KLP-6 remains to be a non-processive monomer even when its autoinhibition is unlocked, suggesting a requirement of other factors for full activation. By examining the differences between KLP-6 and UNC-104, we identified a coiled-coil domain called coiled-coil 2 (CC2) that is required for the efficient dimerization and processive movement of UNC-104. Our results suggest a common activation mechanism for kinesin-3 family members, while also highlighting their diversification.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Proteínas do Tecido Nervoso , Animais , Proteínas de Caenorhabditis elegans/genética , Cinesinas/genética , Proteínas dos Microtúbulos , Proteínas do Tecido Nervoso/genética , Multimerização Proteica
2.
Pestic Biochem Physiol ; 194: 105526, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532338

RESUMO

Methidathion is a highly effective organophosphorus pesticide and is extensively utilized for the control of insects in agricultural production. However, there is little information on the adverse effects and underlying mechanisms of methidathion on aquatic organisms. In this work, embryonic zebrafish were exposed to methidathion at concentrations of 4, 10, and 25 mg/L for 96 h, and morphological changes and activities of antioxidant indicators alterations were detected. In addition, the locomotor behavioral abilities of zebrafish exposed to methidathion were also measured. To further explore the mechanism of the toxic effects of methidathion, gene expression levels associated with cardiac development, cell apoptosis, and the immune system were tested through qPCR assays. The findings revealed that methidathion exposure could induce a decrease in survival rate, hatchability, length of body, and increase in abnormality of zebrafish, as well as cardiac developmental toxicity. The LC50 value of methidathion in zebrafish embryos was determined to be about 30.72 mg/L at 96 hpf. Additionally, methidathion exposure triggered oxidative stress in zebrafish by increasing SOD activity, ROS, and MDA content. Acridine orange (AO) staining indicated that methidathion exposure led to apoptosis, which was mainly distributed in the pericardial region. Furthermore, significant impairments of locomotor activity in zebrafish larvae were induced by methidathion exposure. Lastly, the expression of pro-inflammatory factors including IFN-γ, IL-6, IL-8, CXCL-clc, TLR4, and MYD88 significantly up-regulated in exposed zebrafish. Taken together, the results in this work illustrated that methidathion caused developmental toxicity, cardiotoxicity, and immunotoxicity in embryogenetic zebrafish.


Assuntos
Praguicidas , Poluentes Químicos da Água , Animais , Peixe-Zebra , Cardiotoxicidade/metabolismo , Compostos Organofosforados/metabolismo , Praguicidas/farmacologia , Estresse Oxidativo , Embrião não Mamífero , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo
3.
Food Chem Toxicol ; 177: 113860, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37263572

RESUMO

Hyoscyamine is a kind of tropane alkaloids, which exists in several plants of the family Solanaceae. However, the mechanism underlying such hyoscyamine toxic effects during early development remains unclear. In this study, an untargeted metabolomics approach was used to investigate the toxic mechanisms of hyoscyamine in zebrafish embryos. The LC10 and MNLC of hyoscyamine in zebrafish embryos were determined to be 350 and 313 µg/mL, respectively. Moreover, hyoscyamine exposure increased the accumulation of ROS and MDA, and altered the activity of antioxidant enzymes (CAT, SOD, and GSH) in zebrafish embryos. After exposure, the embryos were extracted, derivatized and analyzed by UHPLC-Q-Orbitrap-HRMS for 3551 metabolites to identify 38 significantly changed metabolites based on the VIP, p value, and fold change results. Metabolic pathways associated with those metabolites were identified using MetaboAnalyst 5.0 as follows: pyrimidine metabolism, purine metabolism, histidine metabolism, beta-Alanine metabolism, and glutathione metabolism. These results suggested that hyoscyamine exposure to zebrafish embryos exhibited marked metabolic disturbance. Such significant perturbations of important metabolites within crucial biochemical pathways may have biologically hazardous effects on zebrafish embryos induced by hyoscyamine.


Assuntos
Hiosciamina , Poluentes Químicos da Água , Animais , Peixe-Zebra , Antioxidantes/farmacologia , Estresse Oxidativo , Metabolômica , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo
4.
Proc Natl Acad Sci U S A ; 120(18): e2221097120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094155

RESUMO

Western dietary patterns have been unfavorably linked with mental health. However, the long-term effects of habitual fried food consumption on anxiety and depression and underlying mechanisms remain unclear. Our population-based study with 140,728 people revealed that frequent fried food consumption, especially fried potato consumption, is strongly associated with 12% and 7% higher risk of anxiety and depression, respectively. The associations were more pronounced among male and younger consumers. Consistently, long-term exposure to acrylamide, a representative food processing contaminant in fried products, exacerbates scototaxis and thigmotaxis, and further impairs exploration ability and sociality of adult zebrafish, showing anxiety- and depressive-like behaviors. Moreover, treatment with acrylamide significantly down-regulates the gene expression of tjp2a related to the permeability of blood-brain barrier. Multiomics analysis showed that chronic exposure to acrylamide induces cerebral lipid metabolism disturbance and neuroinflammation. PPAR signaling pathway mediates acrylamide-induced lipid metabolism disorder in the brain of zebrafish. Especially, chronic exposure to acrylamide dysregulates sphingolipid and phospholipid metabolism, which plays important roles in the development of anxiety and depression symptoms. In addition, acrylamide promotes lipid peroxidation and oxidation stress, which participate in cerebral neuroinflammation. Acrylamide dramatically increases the markers of lipid peroxidation, including (±)5-HETE, 11(S)-HETE, 5-oxoETE, and up-regulates the expression of proinflammatory lipid mediators such as (±)12-HETE and 14(S)-HDHA, indicating elevated cerebral inflammatory status after chronic exposure to acrylamide. Together, these results both epidemiologically and mechanistically provide strong evidence to unravel the mechanism of acrylamide-triggered anxiety and depression, and highlight the significance of reducing fried food consumption for mental health.


Assuntos
Metabolismo dos Lipídeos , Peixe-Zebra , Masculino , Animais , Depressão , Doenças Neuroinflamatórias , Acrilamida , Ansiedade , Contaminação de Alimentos/análise
5.
Food Chem Toxicol ; 176: 113776, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37059383

RESUMO

Chlorprenaline hydrochloride (CLOR) is a typical representative of ß-adrenergic agonists that may be used illegally as a livestock feed additive and may have adverse impacts on the environment. In the present study, zebrafish embryos were exposed to CLOR to investigate its developmental toxicity and neurotoxicity. The results demonstrated that CLOR exposure led to adverse effects on developing zebrafish, such as morphological changes, a high heart rate, and increased body length, resulting in developmental toxicity. Moreover, the up-regulation of activities of superoxide dismutase (SOD) and catalase (CAT) and the enhancement of malondialdehyde (MDA) content illustrated that CLOR exposure activated oxidative stress in exposed zebrafish embryos. Meanwhile, CLOR exposure also caused alterations in locomotive behavior in zebrafish embryos, including an increase in acetylcholinesterase (AChE) activity. Quantitative polymerase chain reaction (QPCR) results showed that the transcription of genes related to the central nervous system (CNS) development, namely, mbp, syn2a, α1-tubulin, gap43, shha, and elavl3, indicated that CLOR exposure could lead to neurotoxicity in zebrafish embryos. These results showed that CLOR exposure could cause developmental neurotoxicity in the early stages of zebrafish development and that CLOR might induce neurotoxicity by altering the expression of neuro-developmental genes, elevating AChE activity, and activating oxidative stress.


Assuntos
Acetilcolinesterase , Peixe-Zebra , Animais , Larva/metabolismo , Acetilcolinesterase/metabolismo , Isoproterenol/metabolismo
6.
Ecotoxicol Environ Saf ; 254: 114723, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36871354

RESUMO

Isofenphos-methyl (IFP) is widely used as an organophosphorus for controlling underground insects and nematodes. However, excessive use of IFP may pose potential risks to the environment and humans, but little information is available on its sublethal toxicity to aquatic organisms. To address this knowledge gap, the current study exposed zebrafish embryos to 2, 4, and 8 mg/L IFP within 6-96 h past fertilization (hpf) and measured mortality, hatching, developmental abnormalities, oxidative stress, gene expressions, and locomotor activity. The results showed that IFP exposure reduced the rates of heart and survival rate, hatchability, and body length of embryos and induced uninflated swim bladder and developmental malformations. Reduction in locomotive behavior and inhibition of AChE activity indicated that IFP exposure may induce behavioral defects and neurotoxicity in zebrafish larvae. IFP exposure also led to pericardial edema, longer venous sinus-arterial bulb (SV-BA) distance, and apoptosis of the heart cells. Moreover, IFP exposure increased the accumulation of reactive oxygen species (ROS) and the content of malonaldehyde (MDA), also elevated the levels of antioxidant enzymes of superoxide dismutase (SOD) and catalase (CAT), but decreased glutathione (GSH) levels in zebrafish embryos. The relative expressions of heart development-related genes (nkx2.5, nppa, gata4, and tbx2b), apoptosis-related genes (bcl2, p53, bax, and puma), and swim bladder development-related genes (foxA3, anxa5b, mnx1, and has2) were significantly altered by IFP exposure. Collectively, our results indicated that IFP induced developmental toxicity and neurotoxicity to zebrafish embryos and the mechanisms may be relevant to the activation of oxidative stress and reduction of acetylcholinesterase (AChE) content.


Assuntos
Poluentes Químicos da Água , Peixe-Zebra , Animais , Humanos , Acetilcolinesterase/metabolismo , Estresse Oxidativo , Desenvolvimento Embrionário , Embrião não Mamífero , Poluentes Químicos da Água/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/metabolismo
7.
Toxics ; 11(1)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36668810

RESUMO

Methyl parathion (MP) has been widely used as an organophosphorus pesticide for food preservation and pest management, resulting in its accumulation in the aquatic environment. However, the early developmental toxicity of MP to non-target species, especially aquatic vertebrates, has not been thoroughly investigated. In this study, zebrafish embryos were treated with 2.5, 5, or 10 mg/L of MP solution until 72 h post-fertilization (hpf). The results showed that MP exposure reduced spontaneous movement, hatching, and survival rates of zebrafish embryos and induced developmental abnormalities such as shortened body length, yolk edema, and spinal curvature. Notably, MP was found to induce cardiac abnormalities, including pericardial edema and decreased heart rate. Exposure to MP resulted in the accumulation of reactive oxygen species (ROS), decreased superoxide dismutase (SOD) activity, increased catalase (CAT) activity, elevated malondialdehyde (MDA) levels, and caused cardiac apoptosis in zebrafish embryos. Moreover, MP affected the transcription of cardiac development-related genes (vmhc, sox9b, nppa, tnnt2, bmp2b, bmp4) and apoptosis-related genes (p53, bax, bcl2). Astaxanthin could rescue MP-induced heart development defects by down-regulating oxidative stress. These findings suggest that MP induces cardiac developmental toxicity and provides additional evidence of MP toxicity to aquatic organisms.

8.
Birth Defects Res ; 115(3): 318-326, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36326103

RESUMO

OBJECTIVES: The present study mainly focused on the assessment of developmental toxicity induced by exposure to brodifacoum (BDF) in zebrafish at early life stages. MATERIAL AND METHODS: Zebrafish embryos were exposed to 0.2, 0.4, and 0.8 mg/L of BDF from 6 to 96 hr post-fertilization (hpf), and the toxic effects of BDF on early embryonic development were investigated in terms of morphological changes, oxidative stress, and alterations in heart development-related genes. RESULTS: The experimental results showed that BDF significantly decreased the heart rate, survival rate, body length, and spontaneous movements of zebrafish embryos at 0.8 mg/L, and the morphological developmental abnormalities were also observed at 96 hpf. In addition, exposure to BDF significantly increased oxidative stress levels in zebrafish embryos by increasing the enzymatic activities of catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels, and decreased glutathione (GSH) levels. Furthermore, BDF treatment-induced alterations in the expression levels of the heart development-related genes (gata4, sox9b, tbx2b, and nppa). CONCLUSION: Results from this study indicated that exposure to BDF could lead to marked growth inhibition and significantly alter the activities of antioxidant enzymes in zebrafish embryos. Moreover, BDF exposure exhibited severe cardiotoxicity and significantly disrupted heart development-related genes. The results indicated that BDF could induce developmental and cardiac toxicity in zebrafish embryos.


Assuntos
Embrião não Mamífero , Peixe-Zebra , Animais , Estresse Oxidativo , Antioxidantes/metabolismo
9.
Metabolites ; 12(10)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36295836

RESUMO

Scopoletin, a typical example of a coumarin compound, exists in several Artemisia species and other plant genera. However, the systemic metabolic effects induced by scopoletin remain unclear. In the present study, we evaluated the metabolic profiles in scopoletin-exposed zebrafish embryos using UHPLC-Q-Obitrap-HRMS combined with multivariate analysis. Compared with the control group, 33 metabolites in scopoletin group were significantly upregulated, while 27 metabolites were significantly downregulated. Importantly, scopoletin exposure affected metabolites mainly involved in phosphonate and phosphinate metabolism, vitamin B6 metabolism, histidine metabolism, sphingolipid metabolism, and folate biosynthesis. These results suggested that scopoletin exposure to zebrafish embryos exhibited marked metabolic disturbance. This study provides a perspective of metabolic impacts and the underlying mechanism associated with scopoletin exposure.

10.
Front Chem ; 10: 1013977, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36204143

RESUMO

A convenient approach for the construction of pharmaceutically valuable 3-trifluoromethyl-1,2,4-triazoles has been developed, which employs the readily available trifluoroacetimidoyl chlorides, hydrazine hydrate and benzene-1,3,5-triyl triformate (TFBen) as starting materials. The multi-component reaction features broad substrate scope, high efficiency, and scalability, providing a facile and straightforward route to the biologically important 3-trifluoromethyl-1,2,4-triazole scaffolds in moderate to good yields. Considering its broad-spectrum pharmaceutical activity, the method offers the opportunity for the further study towards the toxicity risk assessment and structure-activity relationship of the pharmaceuticals containing trifluoromethyl-1,2,4-triazole cores.

11.
Artigo em Inglês | MEDLINE | ID: mdl-36294112

RESUMO

Abuse of new psychoactive substances increases risk of addiction, which can lead to serious brain disorders. Fentanyl is a synthetic opioid commonly used in clinical practice, and behavioral changes resulting from fentanyl addiction have rarely been studied with zebrafish models. In this study, we evaluated the rewarding effects of intraperitoneal injections of fentanyl at concentrations of 10, 100, and 1000 mg/L on the group shoaling behavior in adult zebrafish. Additional behavioral tests on individual zebrafish, including novel tank, novel object exploration, mirror attack, social preference, and T-maze memory, were utilized to evaluate fentanyl-induced neuro-behavioral toxicity. The high doses of 1000 mg/L fentanyl produced significant reward effects in zebrafish and altered the neuro-behavioral profiles: reduced cohesion in shoaling behavior, decreased anxiety levels, reduced exploratory behavior, increased aggression behavior, affected social preference, and suppressed memory in an appetitive associative learning task. Behavioral changes in zebrafish were shown to be associated with altered neurotransmitters, such as elevated glutamine (Gln), gamma-aminobutyric acid (GABA), dopamine hydrochloride (DA), and 5-hydroxytryptamine (5-HT). This study identified potential fentanyl-induced neurotoxicity through multiple neurobehavioral assessments, which provided a method for assessing risk of addiction to new psychoactive substances.


Assuntos
Serotonina , Peixe-Zebra , Animais , Fentanila/toxicidade , Dopamina , Analgésicos Opioides , Glutamina , Neurotransmissores , Homeostase , Ácido gama-Aminobutírico , Comportamento Animal
12.
Brief Bioinform ; 23(5)2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35998896

RESUMO

Nuclear receptors (NRs) are ligand-activated transcription factors, which constitute one of the most important targets for drug discovery. Current computational strategies mainly focus on a single target, and the transfer of learned knowledge among NRs was not considered yet. Herein we proposed a novel computational framework named NR-Profiler for prediction of potential NR modulators with high affinity and specificity. First, we built a comprehensive NR data set including 42 684 interactions to connect 42 NRs and 31 033 compounds. Then, we used multi-task deep neural network and multi-task graph convolutional neural network architectures to construct multi-task multi-classification models. To improve the predictive capability and robustness, we built a consensus model with an area under the receiver operating characteristic curve (AUC) = 0.883. Compared with conventional machine learning and structure-based approaches, the consensus model showed better performance in external validation. Using this consensus model, we demonstrated the practical value of NR-Profiler in virtual screening for NRs. In addition, we designed a selectivity score to quantitatively measure the specificity of NR modulators. Finally, we developed a freely available standalone software for users to make profiling predictions for their compounds of interest. In summary, our NR-Profiler provides a useful tool for NR-profiling prediction and is expected to facilitate NR-based drug discovery.


Assuntos
Aprendizado Profundo , Receptores Artificiais , Receptores dos Hormônios Gastrointestinais , Receptores de Imunoglobulina Polimérica , Receptor do Fator Ativador de Células B , Proteína Semelhante a Receptor de Calcitonina , Receptor gp130 de Citocina , Antagonistas dos Receptores H2 da Histamina , Ligantes , Antagonistas dos Receptores de Neurocinina-1 , Proteínas Proto-Oncogênicas c-met , Receptor de Glutamato Metabotrópico 5 , Proteínas Tirosina Fosfatases Classe 2 Semelhantes a Receptores , Receptores de Hidrocarboneto Arílico , Receptores de Calcitriol , Receptores Citoplasmáticos e Nucleares , Receptores Muscarínicos
13.
J Chem Inf Model ; 62(11): 2788-2799, 2022 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-35607907

RESUMO

The prediction and optimization of pharmacokinetic properties are essential in lead optimization. Traditional strategies mainly depend on the empirical chemical rules from medicinal chemists. However, with the rising amount of data, it is getting more difficult to manually extract useful medicinal chemistry knowledge. To this end, we introduced IDL-PPBopt, a computational strategy for predicting and optimizing the plasma protein binding (PPB) property based on an interpretable deep learning method. At first, a curated PPB data set was used to construct an interpretable deep learning model, which showed excellent predictive performance with a root mean squared error of 0.112 for the entire test set. Then, we designed a detection protocol based on the model and Wilcoxon test to identify the PPB-related substructures (named privileged substructures, PSubs) for each molecule. In total, 22 general privileged substructures (GPSubs) were identified, which shared some common features such as nitrogen-containing groups, diamines with two carbon units, and azetidine. Furthermore, a series of second-level chemical rules for each GPSub were derived through a statistical test and then summarized into substructure pairs. We demonstrated that these substructure pairs were equally applicable outside the training set and accordingly customized the structural modification schemes for each GPSub, which provided alternatives for the optimization of the PPB property. Therefore, IDL-PPBopt provides a promising scheme for the prediction and optimization of the PPB property and would be helpful for lead optimization of other pharmacokinetic properties.


Assuntos
Aprendizado Profundo , Proteínas Sanguíneas/metabolismo , Química Farmacêutica , Humanos , Ligação Proteica
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 276: 121240, 2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35429864

RESUMO

The layered rare earth hydroxides have attracted increasing interests due to their diverse chemical composition and tunable spectroscopic properties. In this paper, a novel Tb3+ activated layered lutetium hydroxide (LLuH:Tb) was fabricated, in which the inorganic NO3- ions were ion-exchanged with organic (ibuprofen or dodecylsulfonate) anions. After the ion-exchange reaction, the organic anions intercalated LLuH:Tb showed the distinct lamellar structure with the interlayer distance of about 2.56 nm, confirming the formation of inorganic/organic hybrid assembly. The dye ibuprofen-intercalated hybrid effectively promoted the characteristic 5D4 â†’ 7F5 green emission of Tb3+ in the host but failed to be exfoliated into nanosheet colloid. On the contrary, the dodecylsulfonate-intercalated hybrid was readily to be exfoliated into nanosheet colloid by dissolving in formamide solvent, but the green emission of Tb3+ was too weak to be observed. To take advantage of their respective merits and explore the practical uses, certain amounts of dye ibuprofen were directly added to the dodecylsulfonate-intercalated hybrid colloid. Excited with the ultraviolet light, the characteristic green fluorescence of Tb3+ was dramatically enhanced, indicating that the dye was a superior light-harvesting antenna to sensitize the activator Tb3+. The dye sensitized hybrid colloid was very stable at ambient temperature and exhibited excellent fluorescent recognition for Cu2+ ions over other metal ions in aqueous solution due to the large fluorescence quenching. The detection limit for Cu2+ ion reaches 7.63 × 10-7 mol/L, which is far lower than the limitation of Cu2+ in drinking water recommended by the World Health Organization (1.57 × 10-5 mol/L). The fluorescence enhanced/quenched sensor with excellent stability exhibits a high potential for the detection of Cu2+ in routine environmental water.


Assuntos
Lutécio , Térbio , Corantes Fluorescentes/química , Hidróxidos/química , Ibuprofeno , Espectrometria de Fluorescência , Térbio/química
15.
Mol Inform ; 41(9): e2200001, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35338586

RESUMO

Identification of disease-drug associations is an effective strategy for drug repurposing, especially in searching old drugs for newly emerged diseases like COVID-19. In this study, we put forward a network-based method named NEDNBI to predict disease-drug associations based on a gene-disease-drug tripartite network, which could be applied in drug repurposing. The novelty of our method lies in the fact that no negative data are required, and new disease could be added into the disease-drug network with gene as the bridge. The comprehensive evaluation results showed that the proposed method had good performance, with AUC value 0.948±0.009 for 10-fold cross validation. In a case study, 8 of the 20 predicted old drugs have been tested clinically for the treatment of COVID-19, which illustrated the usefulness of our method in drug repurposing. The source code and data of the method are available at https://github.com/Qli97/NEDNBI.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos , Reposicionamento de Medicamentos/métodos , Humanos , Software
16.
J Appl Toxicol ; 42(6): 1067-1077, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34967033

RESUMO

Anisodamine is one of the major components of the tropine alkaloid family and is widely used in the treatment of pain, motion sickness, pupil dilatation, and detoxification of organophosphorus poisoning. As a muscarinic receptor antagonist, the low toxicity and moderate drug effect of anisodamine often result in high doses for clinical use, making it important to fully investigate its toxicity. In this study, zebrafish embryos were exposed to 1.3-, 2.6-, and 5.2-mM anisodamine for 7 days to study the toxic effects of drug exposure on pigmentation, mineral density, craniofacial area, and eye development. The results showed that exposure to anisodamine at 1.3 mM resulted in cranial malformations and abnormal pigmentation in zebrafish embryos; 2.6- and 5.2-mM anisodamine resulted in significant eye development defects and reduced bone density in zebrafish embryos. The associated toxicities were correlated with functional development of neural crest cells through gene expression (col1a2, ddb1, dicer1, mab21l1, mab21l2, sox10, tyrp1b, and mitfa) in the dose of 5.2-mM exposed group. In conclusion, this study provides new evidence of the developmental toxicity of high doses of anisodamine in aqueous solutions to organisms and provides a warning for the safe use of this drug.


Assuntos
Alcaloides de Solanáceas , Peixe-Zebra , Animais , Embrião não Mamífero , Minerais/metabolismo , Minerais/farmacologia , Pigmentação , Alcaloides de Solanáceas/metabolismo , Alcaloides de Solanáceas/farmacologia , Alcaloides de Solanáceas/uso terapêutico , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
17.
Sci Total Environ ; 806(Pt 3): 151228, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715218

RESUMO

Environmental hypoxic hazard has increasingly become a global public health issue, with impelling evidences supporting the relation between hypoxia and cognitive disorders. As a potent stressor, hypoxia causes mitochondrial dysfunction with insufficient energy production, thus the formation of brain memory disorder. Yet, the underlying molecular mechanism/s against hypoxia induced injury have yet to be identified. Here, we report that cold inducible RNA binding protein (Cirbp) attenuates hypoxia induced insufficient energy production and oxidative stress. Further analyses show that Cirbp sustains protein levels of respiratory chain complexes II (SDHB) and IV (MT-CO1), and directly binds the 3'UTR of Atp5g3 to control mitochondrial homeostasis and ATP biogenesis upon hypoxic stress. Altogether, our data establish Cirbp as a critical protective factor against hypoxic health hazard and provide novel insights into its latent regulation network.


Assuntos
Hipóxia , Proteínas de Ligação a RNA , Encéfalo/metabolismo , Humanos , Transtornos da Memória , Mitocôndrias/metabolismo , Proteínas de Ligação a RNA/metabolismo
18.
Proteins ; 90(2): 485-492, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34546589

RESUMO

Acetylcholinesterase (AChE) is the crucial enzyme in the central nervous system. It is the target of various organophosphorus nerve agents and pesticides, and the inhibition of AChE is a therapeutic strategy for the treatment of various neurological-related diseases. The Glu202 is a key residue adjacent to the catalytic His447 and plays important role in catalysis. Although the Glu202 has long been considered as negatively charged in many studies, more and more evidences support a protonated Glu202. However, Glu202 is freely accessible by solvent, and thus it seems more reasonable for Glu202 to majorly take the deprotonated state. In the present work, we carried out a series of molecular dynamics simulations with the Glu202 adopting different protonation states. Our results show that the protonated Glu202 is important in maintaining the key hydrogen bond network that supports the catalytic triad, whereas the deprotonated Glu202 results in the collapse of the key hydrogen bond network which consequently destabilizes the catalytic His447. We also notice that different protonation states of Glu202 merely alters the binding mode of ACh. However, since the catalytic His447 is disrupted if Glu202 is deprotonated, His447 cannot facilitate the nucleophilic attack performed by Ser203. Therefore, the catalytic efficiency of ACh hydrolysis should be remarkably decreased if Glu202 is deprotonated. Our findings suggest that, when designing and developing highly active AChE inhibitors or proposing mechanistic hypotheses for AChE-catalyzed reactions, the protonated state of Glu202 should be considered.


Assuntos
Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/metabolismo , Domínio Catalítico , Ligação de Hidrogênio , Modelos Químicos
19.
Front Pharmacol ; 12: 754175, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34603063

RESUMO

Vitiligo is a complex disorder characterized by the loss of pigment in the skin. The current therapeutic strategies are limited. The identification of novel drug targets and candidates is highly challenging for vitiligo. Here we proposed a systematic framework to discover potential therapeutic targets, and further explore the underlying mechanism of kaempferide, one of major ingredients from Vernonia anthelmintica (L.) willd, for vitiligo. By collecting transcriptome and protein-protein interactome data, the combination of random forest (RF) and greedy articulation points removal (GAPR) methods was used to discover potential therapeutic targets for vitiligo. The results showed that the RF model performed well with AUC (area under the receiver operating characteristic curve) = 0.926, and led to prioritization of 722 important transcriptomic features. Then, network analysis revealed that 44 articulation proteins in vitiligo network were considered as potential therapeutic targets by the GAPR method. Finally, through integrating the above results and proteomic profiling of kaempferide, the multi-target strategy for vitiligo was dissected, including 1) the suppression of the p38 MAPK signaling pathway by inhibiting CDK1 and PBK, and 2) the modulation of cellular redox homeostasis, especially the TXN and GSH antioxidant systems, for the purpose of melanogenesis. Meanwhile, this strategy may offer a novel perspective to discover drug candidates for vitiligo. Thus, the framework would be a useful tool to discover potential therapeutic strategies and drug candidates for complex diseases.

20.
Angew Chem Int Ed Engl ; 60(40): 21959-21965, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34351032

RESUMO

Benzoylecgonine (BZE) is the major toxic metabolite of cocaine and is responsible for the long-term cocaine-induced toxicity owing to its long residence time in humans. BZE is also the main contaminant following cocaine consumption. Here, we identified the bacterial cocaine esterase (CocE) as a BZE-metabolizing enzyme (BZEase), which can degrade BZE into biological inactive metabolites (ecgonine and benzoic acid). CocE was redesigned by a reactant-state-based enzyme design theory. An encouraging mutant denoted as BZEase2, presented a >400-fold improved catalytic efficiency against BZE compared with wild-type (WT) CocE. In vivo, a single dose of BZEase2 (1 mg kg-1 , IV) could eliminate nearly all BZE within only two minutes, suggesting the enzyme has the potential for cocaine overdose treatment and BZE elimination in the environment by accelerating BZE clearance. The crystal structure of a designed BZEase was also determined.


Assuntos
Cocaína/análogos & derivados , Hidrolases/química , Cocaína/química , Cocaína/metabolismo , Hidrolases/metabolismo , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...